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High-energy processes in strong magnetic fields or in relativistic plasmas need special 
techniques in the evaluation of the traces that arise from the contribution of the electrons 
that mediate the interaction. To augment the standard procedure which is inadequate in 
such cases, a REDUCE based program is discussed and presented. 

1. INTRODUCTION 

Meaningful radiative processes in a plasma environment of high-energy particles 
under the influence of an intense magnetic field, where W, = eH/mc > up = 
(4nnea/m)1/2, take into account the surrounding particles’ atmosphere as well as the 
consequences of instabilities where mode conversion is possible [I, 21. Under such 
conditions, the electrons play a significant role in mediating the various interactions [3] 
and therefore summation over electron spin states is required to compensate for our 
ignorance of the exact spin states. In such a procedure, the evaluation of the trace 
cannot follow the standard procedure due to the fact that the square of such an 
electron wavefunction is irreducible and cannot be diagonalized. An alternative 
method, that enables the evaluation of the trace, rests upon the expansion of that 
irreducible matrix in the 16 independent I’ matrices that form a complete set. 

In the setup of the calculation the wavefunction of the electron is obtained from the 
solution of the Dirac equation in a magnetic field [4] which is 

# = #(r) exp[--im+t/fi], (1) 

gL(r) = u,(t) expl- 4~5~1 ew AWN + @I, 
E = [l + x2 + 2dy2; n = 0, l,...; x = P,lmc; 0 = H/H,, 

H, = m2c3/efi = 4.144 x 1013 G, 
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[ = aWy + kzLY-W; 01 zzz (jq-2. c 9 A, = filmc, 

Cl = a.& C, = saB, C, = ?pbA, C, = qbB, 

a2 = 4(1 + q~-l), b2 = $(l - +), 

62 = fr[l + SX(X2 + 2n0)-3, 82 = &[l - S&2 + 2&)-7, 

q = f 1, s = &I indicating positive and negative energies and the sign of the 
projection of the momentum component along the spin. R, are the Hermite poly- 
nomials normalized to 1 in (- co, co), 

fj, = ,114,-1~42-~13~~~)-1~3~~ , 

2. TAKING A TRACE 

Taking the trace in the calculation of any scattering process pertinent to the present 
discussion involves something of the form 

where A (or B) can have from one to five different Lorentz four vectors. For example, 
in the longitudinal to transverse mode conversion [2] (to be referred to as paper I) 
we find in one case that A = ,&e’; B = c’& where e, e’ are the appropriate polariza- 
tion vectors of the plasma modes (longitudinal or transverse plasma photon), k comes 
from the propagator contribution to the momentum, and ,J+ = Y“err . Or in the calcula- 
tions of the emission vertex for a plasma mode and an electron (cf. paper I) A = B = ,L. 

Further 
Tr $At,hjB$ = const Tr VA UDBU 

= const Tr AMBM’ 

where M is a 4 x 4 matrix, the origin of which can be easily traced to the form of the 
electron wavefunction satisfying the Dirac equation in a strong magnetic field. 
Namely, 

1 

q31fn2 0 C1C3Rn2 0 

up, = c ,OR c,a:-, 0 c,c&f-, 
31 n2 0 C32f7,2 

0 c,c,& 0 C,2G;-, 1 
0 ’ CW 

c;2i7;f 0 c;c;iT:, 0 

UiB, = 

[ 

c,c~~2 
c;2R;,-l 0 c;c;R;,L, 

31 n’ 0 C;2R;t 0 . 
(2b) 

0 c;c;B;,-, 0 c;“rrgL, I 

It is essentially the information contained in M, information about transitions 
among Landau levels and radiation, and its particular form which makes the processes 
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in a strong magnetic field different from the standard calculations. To proceed with 
the calculations UD = A4 is expanded in the 16 different r matrices which constitute 
a complete set 

M = aI + ywb, + ysyuc,, + dy5 + euvouv 

with the coefficients a, b,, , c, , d, eU” and where 

I?” = (i/2)(y”y” - y”yU). 

(3 

To single out the proper coefficients we multiply M by the appropriate matrix and 
take a trace to find that 

a = & Tr M, (44 
4, = 4 TrhW, (4b) 

c, = -1 WmdW~ (44 
d = 4~ TrhiW, (44 

epl = 4 Tr(u,JO (&I 

It should be noted that while A and B change according to the particular case, there 
is always the same part of the combination M, M’ that survives as the coefficients gi 
(i = l,..., 13) that will further depend in each case on the combination of the Dirac 
delta functions that result from the integration. 

For any one particular combination of A and B we have therefore to calculate the 
following terms: 

g,AB, aA&, 3 gSABuUY, g&u&v 7 wW$wv 3 
g,Awu&v 7 g&,y&wv 9 g&,4 a&&, > 
gx&W’“> g,&+‘“B, gw@‘“&v g13AuU”Buo1. 

Implicit in some of the above there still is a sum over the Lorentz four indices which 
in fact is needed in order that the array of numbers obtained as the form of gi be 
collapsed into a sum. Such a collapse will take place when summation over the paired 
indices is performed (an index in gi and an index in the rest of the term). For example, 
in the case of g, we have 

TrfwWk = Tr[QUr y,JNTr YJO AY,BY,I 

= ii Tr (x c (Tr y,M)Ur Y,M') AruBrv . (5) 
P ” 

3. SOME RADIATIVE PROCESSES 

More specifically, when the mode conversion of plasmon to photon is calculated, 
in essence what has to be performed is the calculation of four expressions that are of 
the form similar to [2] 

Tr d(i@ + m) b’Mtf’(i@ + m) bM’ (64 
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where 
D = [(n& - ~AoJ’)~ - (P; - 2k;)2 - (P; - 21t;)~]~‘~. 

The shortest nontrivial trace to be evaluated is therefore of the form (see Appendix A 
for the expanded form) Tr ,&M.&M’ whereas we also have higher terms such as 

Tr k@)L’($ Tr u,,,M) oUvk’&(~ Tr a,,M’) 19~ (6’9 
which gives 

-Q Tr(t Tr u,J#)(& Tr uApM’)[~~~‘yuyv~‘~~AyP 
-d%f’y”y”e’DeyByA - ~&‘yvypb’@yAyo 
+ LPl’y’yv’myy”y”1. 

We see that a trace has to be performed over 10 Dirac matrices. In another case, 
however, we have 

Tr ~WY~Y~(& Tr Y~Y~W ~‘l%.~Yf Tr Y~YAM’) (7) 

which involves 16 Dirac matrices once y5 is written in its explicit form of yS = 
iy0yly2y3. 

If we consider a different process, say that of magneto-Bremssrhahmg (cf. paper I) 
we find the expression 

Tr 1(P)’ - m) y4My4($ - m) bM’ (8) 

which gives similar-type terms. 
There are two types of expressions in any such calculation. That involving an even 

number of contracted Dirac matrices, and the one involving an odd number of such 
matrices (not to be confused with the total number of all the Dirac matrices-con- 
tracted and noncontracted that are to be traced-as obviously in this case the trace of 
an odd number vanishes). The coefficients for those traces are defined as 

odd and g, ,..., gytd 

(see Appendix B). Examining the 25 terms in any (e.g., of the above) group, it is noted 
that apart from gzven = gidd the gFven and gFdd are complimentary. 

The same situation prevails of course in other calculated processes such as in the 
3 mode interaction under similar conditions, and thus is of a general nature which 
deserves a general computer programming that facilitates computational efforts of 
such high-energy processes. 

Thus in the magneto-Bremssrhalung process we have that (8) is now 

(9) 
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When higher order processes are calculated such as the 3 plasmon interaction (cf. 
paper I) the situation is even more combersome as we now have 

where 

Tr[b(iP) f m) t’(iB’ + m) +!“M/‘(iJY + m) h’(i@ f m) bM’ 

+ 5 more terms of the same nature] 
(10) 

D’ = [(mc”E )” - p’” - p’n]1’2. R 2 z 

When the expansion for A4 and M’ is employed in each of the resulting terms, the 
number of the y matrices to be traced in one product goes as high as 20. 

From the outset we would then have to evaluate for the 3 mode interaction 13 times, 
16 terms in each of the total 6 expressions, which gives us 1248 terms where each single 
trace is by itself; not an easy task to be carried out. 

4. AUTOMATED COMPUTATIONS 

Sensibly such a calculation requires the aid of a computer. This, however, presents a 
computational problem even if computers are used, due to their present capabilities. 
The size of the core and output needed to evaluate traces does not grow linearly with 
the length of the term traced over, and a machine like the PDP 10, for example, will 
run into difficulties when traces over 10~ matrices are performed, and special software 
and hardware knowledge is required, apart from the construction of the program, to 
obtain a trace of, say, 12 Dirac matrices, let alone such a high number as 16 or 20. 

In discussing the programming it is instructive and important first to point out the 
existing methods and then where and why they are inappropriate for our case. A less 
complicated case is of course the standard case which will take several months to be 
calculated manually [6] despite the simple algebraic nature of the calculation, with of 
course the numerous opportunities that exist for errors. In such standard calculations, 
automated computation is utilized. In fact the need for automated computation was 
first realized in the calculation of traces of products of Dirac matrices and four 
momenta in quantum electrodynamics. A simple high computational language such as 
FORTRAN is not flexible enough for such calculations, though interesting attempts 
to use FORTRAN for that purpose have been made with some success [7], and using 
the machine code for this purpose will result in large volumes which are quite tedious 
D3 

As a result there exist at present three different symbol manipulation systems that 
can normally be used when Dirac algebra is involved. ASHMEDAI, written by 
Levine [8]; SCHOONSCHIP, written by Veltman [9]; and REDUCE, written by 
Hearn [S]. 

Both ASHMEDAI and SCHOONSHIP are written in machine language. ASH- 
MEDAI is written partly in the CDC 3000 machine language and partly in FORT- 
RAN, and SCHOONSCHIP is written in the CDC 6000, 7000 machine code. 
REDUCE is based on Lisp 1.5 [6] rather than a machine code. However, due to the 
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Lisp 1.5 structure it is obvious that both run time and core would be significantly 
larger in the latter case than, say when using SCHOONSCHIP which alfords the 
user the capability of handling large expressions while using less than 30k of core 
memory [IO]. 

REDUCE in its standard form has successfully been used by authors such as 
Clark and his collaborators. For examples, see [ll-131. 

The present work is based on REDUCE. It differs from the standard procedure in 
that among other calculations, the inner trace has also to be performed in order to 
evaluate the coefficients in the expansion of uU (see Appendix B). Such coefficients 
cannot be calculated in a separate self-supporting manner, as the results yield terms 
that have the appropriate indices which ensure the possibility and allow the evaluation 
of the outer traces, so to speak. These coefficients contain in the form of uti numerical 
parts obtainable in a numeric calculation of the Ci terms (cf. (1) and (5)). Therefore 
it is a mixture of numeric and symbol manipulating languages that have to be used 
simultaneously. While in the past such a mixture could be obtained, for example, 
by using the machine language, which required more specific knowledge of the machine 
used (i.e., its internal software construction), for the calculation, as such a program 
was not machine independent, it is now readily accessible through the system, as it 
enables one to call in separate procedures written in either ALGOL or FORTRAN. 
The present program, though based on REDUCE, nevertheless requires new structure, 
layout, and definitions right from the outset. 

In order to use the symbol manipulating program with the aid of REDUCE the 
reader is referred to Appendix C. 

5. ALTERNATIVES 

It should be noted that other ways exist by which a result can be obtained, though 
less elegant, less concise, and of course less general. For example, if the term Tr 
,&&‘M&@,dM’ is to be so calculated, one obvious way of doing it is to require the 
explicit use of the conditions imposed by the a,,,, and 8n--l,n, which are obtained from 
the y integration over the matrices M and M’ that contain the appropriate Hermite 
functions. Thus it is found that 

where b is the matrix of elements oii (i = I,..., 4;j = I,..., 4) (cf. Appendix D for 
the explicit form of the different a<?). Obviously & = 6s’ is then obtained. 

In the same way we find 
8“ = &q,f’ = 3’ 

where Z is the matrix of elements aij (i = I,..., 4;j = l,..., 4) and then move to 
obtain 

r I -,I uz=+!a. (13) 
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Finally we take the product 8 = &Sz and then the trace of it as a simple sum of the 
diagonal terms. 

Results for the cases a,,,, and 6,-i.,, have to be obtained separately (cf. Appendix 
D). Only after that can order of magnitude calculations give final numerical answers to 
the problem under study. 

APPENDIX A 

The expanded form of the shortest nontrivial trace is: 

‘Wm2Hi Tr MI + YA Tr YX) - r5ru(i Tr w,iW + (4 Tr y&f) y5 

+ (t Tr WW @@I h’L[f Tr M’I + yA($ Tr y&f’) - ysyA(& Tr y5yAM’) 

+ (4 Tr y5M’) y5 + (t Tr u,&f’) @I $- im(t?‘[i Tr MI + y,,<$ Tr y,M) 
- ysy% Tr y5ywW + 4 Tr y5M) y5 + (t Tr GW uuvl t’@‘C[$ Tr ~4’1 
i YA(~ Tr x&f’) - r5rYi Tr Y~YJW + (t Tr y&f’) y5 + (i Tr uA,M’) 4 
+ bBL’& Tr MI + r,(;t Tr Y,W - y5y% Tr w,W + (2 Tr Y&O y5 

+ <a Tr u,,M) uwv] b’k[$ Tr WI + yn($ Tr ynM’) - y5yA(f Tr y5yAM’) 

+ (1 Tr y5W y5 + (t Tr u,&f’) +‘I) - bBC’[) Tr MI + r,(t Tr y,W 
- y5yu(f Tr y5yUW + (i Tr y5M y6 + (4 Tr u,,&f) 4 b’b4i Tr ~4’1 
+ Y% Tr yAf’) - y5yA(i Tr Y~Y,+~‘) + (4 Tr y5W y5 + (4 Tr s&f’) @II. 

APPENDIX B 

g, = Q(Tr MI)(Tr WI), gz = HTr MI)(Tr y&f’), g, = &(Tr MI)(Tr u@~M'); 

g4 = if(Tr y,W(Tr ~40 g5 = - &(Tr y,W(Tr Y~YN’); 

g.3 = - BVr y5yuW(Tr Y&W, g7 = Q(Tr w,W(Tr wVM’); 
a, = B(Tr y&)(Tr M’I), g9 = +dTr wW(Tr y&f’), glo = B(Tr y,W(Tr u”“M’); 
g,, = i(Tr c+‘“M)(Tr WI), glz = B(Tr @M)(Tr y5M'), 

g,, = i(Tr o”“M)(Tr @‘M’). 

In particular in our case 

g, == B(Cl' + ca2 + e,z + C,z)(cy + e;3 + c;3 + Ci3); 

g, = HG" + Tz2 i- c; + cg2)(e;c; + e;s;, + e;c; f C;Q; 

93 = Q(C," + C-22 -I- c; + C,") XL,, g, = 'X X' B ~1 VI g, = - gx,,r;; 

& = - BYX, g, = QY,Yi ; 

-- __ -_ 

g, = Q(C3G + CA + ClC3 -t c,c,)(C;"-k C;" + c;z + qy; 
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-- -- -- __ 
g, = XC& + c,c, + c,c, + c,c,)(c;c; + c;;c; + c;c; + C;,C$; 

-- -- -- -_ 
a0 = HC3G + w, + w, + GG> XL” ; 

g,, = g!ruy(c;2 + c.s” + ci2 + c;z>; 

g,, = &Y,,<c;e; + c;c; + c;c; + e;c;); 

where 
-- -- __ 

0, [-cl2 - c32 + c22 - C,2], 0, 0, i[-C3Cl + c,c, - c,c, + C,C,], 0, 0,O) 

and where 
cm = CevenR,-1 ; Codd = CoddB, ; 

C -l?ven = C&,,17,~-, ; C;dd = Codd& . 

APPENDIX C 

The following statements are given in the form of LET statements: 

Cl1 = Cl ** 2, CllP = CIP ** 2, 
c22 = c2 ** 2, C22P = C2P ** 2, 
c33 = c3 ** 2, C33P = C3P ** 2, 
c44 = c4**2, C44P = C4P ** 2; 

ClC= Cl **2*CIP**2, 
c2c = c2 ** 2 * C2P ** 2, 
C3C= C3**2*C3Pw2, 
c4c = a tt 2 c C4P t* 2; 

ClPC = CIP ** c1 *+ 2, CllC = ClC + UPC, 
C2PC = C2P f* c2 ** 2, c22c = c2c + C2PC, 
C3PC = C3P ** c3 ** 2, c33c = c3c + C3PC, 
C4PC = C4P ** c4 *c 2, c44c = c4c f C4PC; 

C1234C = ClC + C2C t C3C f C4C; 

c12c = Cl ** 2 * C2P *;I: 2, c21c = c2 ** 2 * CIP ** 2, 
c13c = Cl *t 2 * C3P ** 2, c13c = Cl ** 2 * C3P c* 2, 
c14c = Cl *Jr 2 c C4P ** 2, c41c = c4 ** 2 * C1P ** 2, 
C23C = C2 ** 2 * C3P c* 2, C32C = C3 +* 2 * C2P *z+ 2, 
C24C = C2 ** 2 * C4P ** 2, C42C = C4 ** 2 t C2P t* 2, 
c34c = c3 ** 2 * C4P ** 2, c43c = c4 t* 2 f C3P ** 2, 
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c1221c = c12c + c21c, 
c1331c = c13c + c31c, 
c1441c = c14c + c41c, 
C2332C = C23C + C32C, 
C2442C = C24C + C42C, 
c3443c = c34c + c43c; 

Gl =~*(C1lrCllP+C22*C22P+C33;rC33P+C44~C44P 
+ Cl1 * C22P + c22 * CIIP + Cl1 * C33P + c33 * CllP 
+ Cl1 * C44P + c44 + CllP + c22 * C33P + c33 * C22P 
+ C22*C44P+ C44*C22P+ c33 *C#P+ C44*C33P), 

G2 = &*(Cll* C3P* CIP+ Cl]* C4p*C2P+ c22* C~P*C~P 
$ C22*C4P*C2Pf c33 * C3P*C1P+ c33 * C4P*C2P 
+ C44*C3P* C1Pf c44* C4P* C2P), 

G8=~c(CllP*C3cCl+C11P~C4*C2+C22P~C3~C1 
+ C22P*C4* C2$ C33P*C3 * Cl $ C33P*C4* c2 
+ C44P * c3 * Cl + C44P* c4 * C2), 

G9 = :*(C3*C1 *C3P*C1P+ C3*C1 *C4P*C2P 
+C4*C2*C4P*C2P+C2*C4*C3P*CIP). 

G3,..., Gl and GIO,..., G13 (inclusive) require the introduction of RULE statements 
in addition to the above LET statements (cf. Appendix B). Namely, in addition we 
have 

RULE SIGMA (L, MU, NU,) = + * (G(L, MU) * G(L, NC/) - G(L, NC/) * G(L,MLT)). 

For X,, and XV: we have 

RULE ZZ(L, MU, NU) = (Z. MU) * (Z. NU) - (Z. NL/) * (Z. MU); 

also 

RULE ZZP(L,MU,NU)= (Zp.MU)*(ZP.NU)-(ZP.NU)*(ZP.MU); 

Z(L, 0, 0) = 0 Z(L, 0, 1) = 0, Z(L, 0, 2) = 0, 
Z(L,0,3)=Z*(C3*Cl-C4*C2+Cl~C3-C2*C4), 
Z(L, I, 0) = 0, Z(L, I, 1) = 0, Z(L, 1, 2) = (Cl 1 + c33 - c22 - C44), 
Z(L, I, 3) = 0, Z(L, 2, 0) = 0, Z(L, 2, I) = (-Cl 1 + c33 + c22 - C44), 
Z(L, 2, 3) = 0, Z(L, 3,O) = z * (-c3 * Cl + c4 * c2 - Cl * c3 + c2 * C4), 
Z(L, 3, 1) = 0, Z(L, 3, 2) = 0, Z(L, 3, 3) = 0; 

x. x = (X0. X0) - Xl. Xl - x2. X2 - X3. x3, 
XP.XP =(XPO.XPO)- XPl.XPl - XP2.XP2 - XP3.XP3; 

(XO.XO)=Cll*Cll+C22cC22+C33~rC33+C44*C44 
+ 2 * (Cl1 * c22 - Cl1 * c33 - Cl1 * c33 - Cl1 * C44 - C22 * C33 
- c22* c44 + c33 * CM); 
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x3. x3 = 0; Y. Y = (YO. YO) - Yl. Yl - Y2. Y2 - Y3. Y3; 

XP3. XP3 = 0; 

(YO. YO) = 0; YP. YP = (YPO. YPO) - YPI. YPl - YP2. YP2 - YP3.YP3; 

(YPO. YPO) = 0; 

Y3.Y3=c11*cl1+c22*c22+c33*c33+c44*c44 
+2*(-C11*C22-C11*C33+C11*C44+C22*C33 
- c22 * c44 - c33 * C44); 

YP3. YP3 = Cl 1P t Cl 1P + C22P Jr C22P + C33P t C33P -c C44P t C44P 
+ 2 * (-CllPc C22P - . . . . 

This also necessitates the appropriate VECTOR declaration in the program. Namely, 
VECTOR X, Y, XP, YP, as well as INDEX declaration for the variables. 

APPENDIX D 

ull = -C12[D3 sin e + (iD, - D,)(cos e F l)] - C&D, sin e, 
g12 = ~,~[D,(cos e i 1) - sin e(iD, - ol)] + ~,~,D,(cos e + i), 
u13 = -C12D, sin 0 - C&&in BD, + (iD, - DJ(COS 0 T l)], 
u14 = C,2D,(cos + 1) + C,C,[D,(cos 8 5 1) - sin 8(iD, - DJ], 
ozl = -C22[(iD2 + DJ sin 6 + D,(cos 6 T l)] + C,C,D,(cos 8 F l), 
I3 - C22[(iD2 + D,)(cos 0 i 1) - D, sin 81 + C,C,D, sin 0, 22 - 

g23 = C22D,(~~~ e -f 1) - C,C,[sin O(iD, + DI) + D,(cos 0 T I)], 
(~24 = C22D, sin 8 + C~C~[(COS 0 f l)(iD, + DI) - D, sin 01, 

U31 = -C,C,[D, sin 0 + (iD, - Dl)(cos 8 F 1) - Ca2D, sin 01, 
u 32 = C,C,[D,(cos 0 4 1) - sin e(iD, - DI)] - C,2D,(cos 8 f I), 
u33 = -C,C,D, sin 0 - C32[sin BD, + (iD, - D,)(cos tl 7 l)], 
U 34 = C,C,D,(cos 0 & 1) + C32[D3(~~~ 0 A 1) - sin 8 (iD, - Dl)], 
(541 = -C,C,[(iD, + Dl) sin e + D,(cos e T l)] + C,2D,(cos e F l), 
042 = C,C,[(iD, + D,)(cos 8 & 1) - D, sin 01 + Cg2D, sin t?, 
ug3 = C,C,D,(cos 0 F 1) - Cg2[sin S(iD, + DJ + D,(cos 0 ‘f l)], 
ug4 = C,C,D, sin 8 + Cg2[cos 8 + l)(iD, + Dl) - D, sin 01. 
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